d | ρ | Label | ID | ||
---|---|---|---|---|---|
C33×C12 | 324 | C3^3xC12 | 324,159 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C12)⋊C32 = C12×He3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 108 | (C3xC12):C3^2 | 324,106 |
extension | φ:Q→Aut N | d | ρ | Label | ID |
---|---|---|---|---|---|
(C3×C12).1C32 = C4×C3≀C3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 36 | 3 | (C3xC12).1C3^2 | 324,31 |
(C3×C12).2C32 = C4×He3.C3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 108 | 3 | (C3xC12).2C3^2 | 324,32 |
(C3×C12).3C32 = C4×He3⋊C3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 108 | 3 | (C3xC12).3C3^2 | 324,33 |
(C3×C12).4C32 = C4×C3.He3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 108 | 3 | (C3xC12).4C3^2 | 324,34 |
(C3×C12).5C32 = C4×C9○He3 | φ: C32/C3 → C3 ⊆ Aut C3×C12 | 108 | 3 | (C3xC12).5C3^2 | 324,108 |
(C3×C12).6C32 = C4×C32⋊C9 | central extension (φ=1) | 108 | (C3xC12).6C3^2 | 324,27 | |
(C3×C12).7C32 = C4×C9⋊C9 | central extension (φ=1) | 324 | (C3xC12).7C3^2 | 324,28 | |
(C3×C12).8C32 = C12×3- 1+2 | central extension (φ=1) | 108 | (C3xC12).8C3^2 | 324,107 |